$$E = mc^2$$
$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$
$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
$$i\hbar\frac{\partial}{\partial t}\Psi = \hat{H}\Psi$$
$$\sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}$$
$$e^{i\pi}-1=0$$
$$E = mc^2$$
$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$
$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
$$i\hbar\frac{\partial}{\partial t}\Psi = \hat{H}\Psi$$
$$\sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}$$
$$e^{i\pi}-1=0$$

Welcome to Matteo Menghini's Website